WHY DO A PAEDIATRIC ECG?

What are the components of a clinical cardiac assessment?

You may be clever enough to make an anatomical diagnosis, but no cardiac assessment is complete without a determination of haemodynamic significance, and a ruling out of possible associations.

- **Cardiac assessment**
 - Diagnosis
 - Haemodynamic significance
 - Associations
 - Anatomy
 - Conduction
 - Heart failure
 - Cyanosis
 - Pulmonary hypertension
 - Other dysmorphology
 - Growth & development failure
 - Infective endocarditis

To make a cardio-logical assessment, we use:
- Clinical acumen (including, always, 4-limb blood pressures)
- Chest X-ray
- Electrocardiogram

What can an ECG be used for?

The ECG has a defined (and limited) use in assisting with making a diagnosis, and in determining haemodynamic significance.

- **ECG usefulness**
 - Diagnosis
 - Haemodynamic significance
 - Chamber hypertrophy

What format should be used to read and report on an ECG?

Before looking at the ECG tracings, write down these headings and then attempt to fill each one in. End with a summary.

1. Rate: on a 10 second strip, count the R waves & multiply by 6
2. Rhythm: ensure a P wave before each QRS
3. PR Interval: each small block is 0.04s (use lead II)
4. Axis: use Leads I and aVf to generate vectors on this diagram → →
5. Right Atrium (lead II)
6. Left Atrium (leads II and V1)
7. Right Ventricle (leads V4R and V1)
8. Left Ventricle (in leads V5&6)
9. Summarise
What diagnoses can be made on a paediatric ECG?

A few diagnoses ARE possible on the ECG. Don't try to work this one out – remember it parrot fashion (it's less difficult than it first appears!)

ECG Diagnoses

- **Cardiac**
 - Conduction
 - Extrinsic
 - Long PRI:
 - ARF
 - Intrinsic
 - SA Node:
 - WAP
 - LAR
 - SVT
 - AV Node:
 - WPW
 - Other re-entry tachy's
 - Metabolic:
 - K+ Ca Rx etc
 - ASD Configurations
 - SA Node: WAP
 - AV Node: WPW
 - Other re-entry tachy's
 - Ebstein Anomaly:
 - Massive RAH, no RV waves
 - Q in V1:
 - IRBBB, L-TGA, UVH, PP>SP, AOCA
 - Raised ST Segment
 - Convex: ischaemia
 - Concave: "Peref"
 - Axis
 - Pink
 - Secundum
 - "Primum"= AVSD
 - Blue
 - Common atrium
 - Pink
 - "Peref"

Non-Cardiac

- Anatomy
- SMA

Metabolic:

- K+ Ca Rx etc

Abbreviations:

- ASD=atrial septal defect; AVSD=atrio-ventricular septal defect; SMA=spinal muscular atrophy; ARF=acute rheumatic fever; peref=pericardial effusion; IR/CBBB=complete bundle branch block; L-TGA= l-transposition of the great arteries; AOCA=anomalous origin of the coronary artery; UVH=univentricular heart; PP=pulmonary pressure; SP=systemic pressure; WPW=wandering atrial pacemaker; LAR=low atrial rhythm; SVT=supraventricular tachycardia; TAPVD=total anomalous pulmonary venous drainage

How can haemodynamic significance be ascertained on a paediatric ECG?

In paediatric cardiology, irreversible pulmonary hypertension (PHT) renders the underlying cause inoperable. ALWAYS look for right ventricular hypertrophy

Chamber Hypertrophy

Right Ventricle

- RVH
 - \(V_1 (\frac{1}{2} \text{ standard}) \)
 - R wave >6 small-blocks
 - Upright T wave (1 week-12 years)

- RAH
 - P wave >2.5 small-blocks (high)

- LAH
 - P wave > 3 small-blocks (wide)
 - Bifid/biphasic

- LVH
 - \(V_6 (\frac{1}{2} \text{ standard}) \)
 - B wave >4 big-blocks (high)

Causes:

- PHT
 - RVOTO

- Ebstein, TA/TS
 - ASD

- Mitral stenosis
 - Causes: LVOFTO

The others

Causes:

- PDA

Abbreviations:

- TA/TS=tricuspid atresia/stenosis; PHT=pulmonary hypertension; PDA=persistent ductus arteriosus; R/LVOFTO=right/left ventricular outflow tract obstruction; L,RV/AVH=left, right ventricular, atrial hypertrophy

Last modified: 12 June 2007

For review: 2009